(1)

International Baccalaureate
Baccalauréat International
Bachillerato Internacional

MATHEMATICS

HIGHER LEVEL
PAPER 3 - DISCRETE MATHEMATICS

Thursday 20 May 2010 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 14]
(a) (i) One version of Fermat's little theorem states that, under certain conditions,

$$
a^{p-1} \equiv 1(\bmod p)
$$

Show that this result is not valid when $a=4, p=9$ and state which condition is not satisfied.
(ii) Given that $5^{64} \equiv n(\bmod 7)$, where $0 \leq n \leq 6$, find the value of n.
(b) Find the general solution to the simultaneous congruences

$$
\begin{aligned}
x & \equiv 3(\bmod 4) \\
3 x & \equiv 2(\bmod 5) .
\end{aligned}
$$

2. [Maximum mark: 9]

A graph G with vertices A, B, C, D, E has the following cost adjacency matrix.

	A	B	C	D	E
A	-	12	10	17	19
B	12	-	13	20	11
C	10	13	-	16	14
D	17	20	16	-	15
E	19	11	14	15	-

(a) (i) Use Kruskal's algorithm to find and draw the minimum spanning tree for G.
(ii) The graph H is formed from G by removing the vertex D and all the edges connected to D . Draw the minimum spanning tree for H and use it to find a lower bound for the travelling salesman problem for G.
(b) Show that 80 is an upper bound for this travelling salesman problem.
3. [Maximum mark: 12]

The positive integer N is expressed in base 9 as $\left(a_{n} a_{n-1} \ldots a_{0}\right)_{9}$.
(a) Show that N is divisible by 3 if the least significant digit, a_{0}, is divisible by 3 . [3 marks]
(b) Show that N is divisible by 2 if the sum of its digits is even.
(c) Without using a conversion to base 10, determine whether or not (464860583), is divisible by 12 .
4. [Maximum mark: 18]
(a) Show that, for a connected planar graph,

$$
v+f-e=2
$$

[7 marks]
(b) Assuming that $v \geq 3$, explain why, for a simple connected planar graph, $3 f \leq 2 e$ and hence deduce that $e \leq 3 v-6$.
(c) The graph G and its complement G^{\prime} are simple connected graphs, each having 12 vertices. Show that G and G^{\prime} cannot both be planar.
5. [Maximum mark: 7]

Given that $a, b, c, d \in \mathbb{Z}$, show that

$$
(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) \equiv 0(\bmod 3) .
$$

